

The OPC-Proxy Project

The OPC-Proxy is a set of libraries aimed to facilitate communication
between the industial autonomation world and big data tools.
It is a gateway to put in comunication a network/server that speaks
the OPC protocol with a network that supports a variety of other protocols.
The supported protocols/services to date are: gRPC, Kafka and InfluxDB.

This Proxy was developed to allow full duplex comunication between an
OPC-server and any of its clients, one of the main features is that it
support an RPC-style type of communication, so that to allow reads and
writes to and from an OPC-server.

This tool uses quite a few opensource libraries, we are gratefull to the opc-foundation [https://github.com/OPCFoundation/UA-.NETStandard],
the lite-DB [https://www.litedb.org/], the Confluent-platform [https://www.confluent.io/], the gRPC framework [https://grpc.io/],
whitout which it would have been impossible to reach this result.

Jump to Concept

	The OPC-Proxy core functionality Introduction

	Description of supported Connectors

	How to Write Your Own Connector

	Configuration options

Introduction

What is OPC-Proxy?

The OPC-Proxy allows to build and deploy a customized IoT gateway to connect any OPC server
with your network of microservices or cloud.
This library is suitable for monitoring and control of devices, while tipically vendors of IoT gateways only offer monitoring.
We focused on defining a protocol for bidirectional communication exposing the user to
a simple API, so that one can read, but also write values to the OPC server without knowing details
about OPC.

	Features:
	
	Suitable for monitoring and controlling devices.

	Simple API.

	Reliable OPC client build with the OPC-foundation [https://github.com/OPCFoundation/UA-.NETStandard] standard library.

	Load nodes from an XML file (Nodeset XML spec) or simply browsing the server

	Powerful Nodes loading selection options

	Modular design with external connectors that can be added, extended and customized.

	Supported connectors: gRPC, Kafka, InfluxDB.

	Written in C#.

Here we describe the features of the OPC-Proxy core [https://github.com/opc-proxy/opc-proxy-core] library.

Basics of OPC

OPC is an opensource protocol used in industrial autonomation. It allows real time communication
beween rugged industrial devices.
The full specification is more than a 1000 pages and is quite complex (you can find it here [https://reference.opcfoundation.org/v104/]), it describes several use cases
and different comunication options, here we aim to support OPC UA. In this section we try to summarize briefly the important notions that are needed in the following.

OPC Data Structure

Data in an OPC server is organized in a tree structure, similar to a filesystem, there are folders, which contain objects, each object can contain variables.
Each variable has an associated data type and various references. Now, one can access any item of the tree, each item is generalized as a Node.
To access any node one needs to know its node id and the namespace under which it is stored. The OPC-proxy can interact only with
nodes related to variables. Each node that is related to a variable has the following properties:

Variable Node properties

	NodeID

	examples are “ns=3;s=var_name” for string identifier and “ns=3;i=1234” for integer identifier, where ns is the namespace.
Weather the identifier is a string or a number depends on the server implementation.

	BrowseName

	Server given name, it is usually related to the variable name, but it can contain additional caracters or can be truncated.
It depends on the server implementation.

	DisplayName

	Human readable variable name, this is usually the name that is displayed to the user.

	Value

	Value of the variable.

Loading Nodes

A client does not in general know the node ids of the variables on which wants to operate on, usually they are strings related to the variable name,
but in general these can be random integers, depending on the implementation of the server. There are two ways to make an opc-proxy aware of the node ids for
the relevant variables, one can feed an XML file produced from the server with all nodes using the OPC UA Nodeset XML schema. Or one can simply
browse each branch of the tree for variable nodes using consequent network calls, this last option is referred to as browsing.
See configuration of the Nodes Loader for more info on the nodes selection criteria.

Warning

Browsing feature:
The use of browsing feature for a server that contains many variables may lead to a large amout of network requests and
can take long time (up to minutes). This of course depends on the server implementation.

Read, Write and Subscribe

An OPC client can read, write and subscribe to change of a server variable.
Both read and write are single network calls, one can specify to read and write multiple variables at the same time.
The OPC-proxy only support to read and write values on variable nodes, does not support any other attribute.
Once the OPC-proxy is connected to the server and the session is open, one can monitor a list of variables for their change,
these are called monitored items, the server will push those change when they occur.

Behaviours

	Session

	Once the session with the opc-server is established, the OPC-proxy will the care of keeping the connection alive,
in case of network interruption the OPC-proxy will keep trying to reconnect at user defined intervals.

	Node Publishing

	once one subscribe for monitor a list of variables, the OPC-server will push their updated values and statuses at intervals
to save network requests. The server will aggregate all the change for all the variables within a certain user defined time,
to minimize the network requests it will send all the changes within the interval in a single network call. The OPC-proxy gives the user the
possibility to set this time intervall.

	Node Monitoring

	The OPC-proxy will automatically monitor (subscribe to change) all nodes specified in the configuration file.

	Read and Write

	The OPC-proxy will only allow to read and write the nodes specified in the configuration file.

	Memory Cache

	The OPC-proxy chaches the latest value for each variable in a in-memory database, so it will always return the value from
cache for each read request made by the client and will not hit the OPC-server.

Connectivity Modules

The OPC-proxy can connect with only one OPC-server, on the other hand it can put the OPC-server in comunication with a large number of clients,
each of these clients can use its own favourite protocol. The OPC-proxy has a modular design, to add new capabilities one simply needs to
add the corresponding connector. Connectors are modules for the OPC-proxy that implement an endpoint for a communication protocol,
they can leverage the OPC-proxy core library to interact with the OPC-server. To write your own connector see the Extend Connectors section.

	The currently supported connectors are:
	
	gRPC: Implements an RPC type of comunication between a server and a client over HTTP. It uses the gRPC framework, see more details in the gRPC Connector section.

	Kafka: Implements a data stream to a Kafka topic trught the Kafka producer library. Implements an RPC type of comunication trough Kafka topics using the JSON-RPC protocol,
it accepts write requests. More details in the Kafka connector section.

	InfluxDB: Submits a stream of metrics to InfulxDB on variables change. More details in the InfluxDB connector section.

Connectors

The OPC-proxy can connect with only one OPC-server, on the other hand it can put
the OPC-server in comunication with a large number of clients, each of these
clients can use its own favourite protocol. The OPC-proxy has a modular design,
to add new capabilities one simply needs to add the corresponding connector.
Connectors are modules for the OPC-proxy that implement an endpoint for a communication protocol,
they can leverage the OPC-proxy core library to interact with the OPC-server.
To write your own connector see the Extend Connectors section.
In this section we describe the currenlty supported connectors: gRPC, Kafka and InfluxDB [https://www.influxdata.com/].

An OPC-Proxy can run multiple connectors, so for example one can push metrics to InfluxDB while
serving a gRPC or Kafka (or both) endpoint.

gRPC Connector

gRPC is a modern open source high performance RPC framework, initially
developed at Google. It is very flexible and userfriendly, it can easily
put in communication different services independently on the programming
language used. For more information visit grpc.io [https://grpc.io/].

As a comunication layer gRPC uses HTTP2, while it uses
protocol buffers [https://developers.google.com/protocol-buffers/]
as serialization/deserialization and Interface Definition Language.

The OPC-Proxy gRPC-Connector repository can be found at gitHub-GrpcConnector [https://github.com/opc-proxy/GrpcConnector].
You find all its configuration options in the Configuration section.

Protocol Definition

A client can initiate Read request and a Write request.
In future also a subscritpion to server push on variable change will be available.
The read/write request and response are defined in the proto-config-file that you can download
from this gitHub-repo [https://github.com/opc-proxy/GrpcConnector/blob/master/opcGrpcConnect/opc.grpc.connect.proto],
you can use the proto-config to generate automatically the code needed for the comunication in almost
any language.

A node is represented as:

NodeValue : {
 name : string, // name of the node
 value : string, // is always a string you need to deserialize it
 timestamp : string, // format ISO 8601 - UTC
 type : string // int, bool, float, string
}

The value of the nodes is always serialized to string, is you responsability to deserialize it
to the type specified.

A read request and its response is defined as:

ReadOpcNodes(ReadRequest) returns (ReadResponse)
// where:
ReadRequest : string[]; // list of node names to be read

ReadResponse : {
 nodes : NodeValue[], // list of read nodes
 isError : bool,
 errorMessage : string
}

The data exchanged in a write request is:

WriteRequest : {
 name : string,
 value : string
}

WriteResponse : {
 isError : bool,
 errorMessage : string
}

The value of the write request need to be serialized always to a string, the OPC-Proxy knows what is
the right type and will take care of the conversion. In case of conversion error or OPC-server error it will
return an error message (error message still in preparation see issue #1 [https://github.com/opc-proxy/GrpcConnector/issues/1])in the response and the isError boolean will be true. A successful write request
will have a isError = false.

gRPC Client Example

An example client based on NodeJs is provided in the gitHub-OPC-Node-Client-Example [https://github.com/opc-proxy/OPC-Node-Client-Examples/tree/master/Examples/gRPC]
Follow the instruction reported there.

First run the OPC-Proxy configured with a gRPC endpont, this example assumes an OPC-Proxy running on port:5051,
which is default, it also assume that the OPC-server is the Python-OPCUA [https://github.com/FreeOpcUa/python-opcua],
or in general that there will be an exposed variable called MyVariable.

The example will read and write a value to MyVariable of the python test server example.
The value of MyVariable is always increasing by 0.1 every half a second. The client will read
its value and reset it to 1.

Keep in mind that the OPC-server will push variables values (if they change) to the OPC-Proxy
with rate of 1 sec, you can query the OPC-Proxy much faster than that, the write request will be forwared
to the server immediately, but read request will read the latest value from the memory cache of the
OPC-Proxy.

Kafka-Connector

Apache Kafka [https://kafka.apache.org/] is an open-source stream-processing platform,
it is the de facto standard for high-throughput, low-latency handling of real-time data feeds.

The Kafka-Connector add the ability to the opc-proxy to stream data to a kafka server. It supports:

	Sending a message on a topic when a node value changes (notification form opc-server)

	Bidirectional comunication, read/write and possibly more, with the PLC using an RPC protocol. The protocol supported is JSON-RPC-2.0 [https://www.jsonrpc.org/specification].

This library uses the Avro [https://avro.apache.org/] serialization library, which allows great flexibility in defining the structure of the data
exchanged. As storage engine for data schemas we are using the Confluent SchemaRegistry [https://www.confluent.io/confluent-schema-registry/], which is necessary for this library.
In the future a JSON based serialization option will be available and so the additional complexity of a schema registry will not be
required anymore (see issue #4 [https://github.com/opc-proxy/KafkaConnectorLib/issues/4]).

The OPC-Proxy Kafka-connector repository can be found at gitHub-KafkaConnectorLib [https://github.com/opc-proxy/KafkaConnectorLib].
You find all its configuration options in the Configuration section.

Data Streams

The Kafka-Connector will by default define three topics the name of which depends on the configuration variable opcSystemName:

	The Metrics-topic, the one containing a stream of nodes value on change, is named as the opcSystemName configuration variable.

	The RPC-request topic, the one where all the (write) request are send, is named opcSystemName with appended suffix -request.

	The RPC-response topic, the one where all the RPC-style responses are served, is named opcSystemName with appended suffix -response.

Note

Keep in mind that your consumer clients need to have different group ID if you want all of them to receive updates.
Also Do Not assign same group ID as the the OPC-Proxy to any other clients.

Serialization Deserialization

In Kafka messages are organized as a key:value pair. Key and Value can be serialized/deserialized with independent
serializers, we choose to serialize Keys using the standard string-serializer, so the message key will always be a strings, while the values are serialized using
the Avro [https://avro.apache.org/] framework.

In Avro one describes the data structure in a JSON-schema, the schema is stored in a schema-registry server, each message has an ID that refer to
that schema, so each client can deserialize the messages dinamically. One can add a data type or modify an existing schema and the client will
be able to properly deserialize the data without the need of additional code. So changing data structure (if backwords compatible) will not break
clients. It also give flexibility, one can configure it to send messages with different data content on the same topic and the
consumer will always be able to deserialize it correctly. Here we use this last property, independently on the Node value type,
the consumer will always get the value properly deserialized (and already with the right type) depending on which language you are using.

For the Metrics-topic, the one where are streamed the nodes values on change, we use as Kafka message Key the node variable name,
while as Kafka message Value we use the following Avro schema:

{
 type: 'record',
 name: datatype + 'Type',
 fields:[
 {
 name:'value',
 type: datatype
 }
]
}

Where datatype can be: string, double, float, boolean, int, long.

Kafka-RPC

For the RPC-style comunication we are using Kafka as a simple message broker, the default configuration of the producer and consumer
of the RPC-topics are such that the comunication between the OPC-server and your client is preformed with latency of the order of 10 ms.
The protocol used used for this comunication is defined in the JSON-RPC spec [https://www.jsonrpc.org/specification].
Even tough Kafka might seems inadequate for an RPC-style comunication, we find that it makes communication in a system
(with many microservices) simpler and more flexible, it is a way to standardize comms, allowing for example a kafka-stream or a
Storm-bolt to write easily to an OPC-server.

You can find the Avro schema used for the RPC-request and RPC-response topics
at gitHub-RPC-Schemas [https://github.com/opc-proxy/OPC-Node-Client-Examples/tree/master/Examples/Kafka/AvroSchemas].
We tried to make it as close as possible to the original spec, but there are a few differences.
The RPC-request kafka message-key is a string and is controlled by the client, the Kafka-Connector does nothing
with it except making sure that the corresponding RPC-response will have the same message-key.
A request message will look like:

// Request
{
 method : string,
 params : string[] // list of strings
 id: long or null
}

Where the only method supported by now is write (but in the future might be more) and params is expected to contain
a list with two strings, the first one representing the name of the node, the second one its value. The Kafka-Connector will take care
of serializing the value from string to the correct data type expected by the OPC-server. The id if provided will be forwarded to
the response, in case of null then the Kafka-Connector will return the Kafka offset as id in the response, in this way you can let
Kafka worry to generate system-wide unique ids for you (well, in this case topic-wide unique ids), you can collect the offset at
request time, tide it to the topic and store it memory, then wait for the corresponding response.

A response message value in the RPC-response topics, would look like:

// Response
{
 result : string or null,

 error : { // != null only if an error exist
 code : integer,
 message : string,
 }

 id: long
}

Given that the only supported method is “write”, the result will be a string representing the written node value to
the OPC-server, and will differ from null only in case of successful write operation.
The error object will only be present in case of an error (when “result” is null).
The id is either forwarded from the request or the Kafka-Offset of the related request-message in the RPC-request topic.

Note

If the RPC-request topic has more than one partition and the id is set to null in a request, the response id will be ambiguous.
Please inform us if you have such a use case.

Kafka-Connector Client Example

You can find an example of kafka client for NodeJs in this repository gitHub-NodeKafka_client [https://github.com/opc-proxy/OPC-Node-Client-Examples/tree/master/Examples/Kafka].
Here we assume as opc test-server the OPCUA-Python-server.
Using Node we show how to connect to a published data stream of nodes change on kafka, and how to interface to the kafka-RPC for writing nodes values.

InfluxDB

InfluxDB [https://www.influxdata.com/] is an open-source time series database
optimized for fast, high-availability storage and retrieval of time series data in fields
such as operations monitoring, application metrics, Internet of Things sensor
data, and real-time analytics.

	Library used

	pushing metrics

Extend Connectors

Warning

This section is under construction.

Configuration

Configuration can be done via JSON file, the default file name is proxy_config.json.
All the config keys that are not recognized will be ignored, if no configuration is provided
for a parameter its default value will be loaded. An example of configuration file can be the following:

{
 "opcServerURL":"opc.tcp://localhost:4840/freeopcua/server/",

 "loggerConfig" :{
 "loglevel" :"info"
 },

 "nodesLoader" : {
 "targetIdentifier" : "browseName",
 "whiteList":["MyVariable"]
 },
 "gRPC" :{
 "port" : 5051
 }
}

OPC related Configs

These configs are related to core features and define how the opc client must behave. They must be placed at the root level of the json file.

	Config Key

	type

	Default

	Notes

	opcServerURL

	string

	none

	OPC server TCP URL endpoint

	reconnectPeriod

	int

	10 [s]

	Time interval [seconds] to wait before retry to reconnect to OPC server

	publishingInterval

	int

	1000 [ms]

	This is a subscription parameter, time intervall [millisecond] at which the OPC server will send node values updates.

	opcSystemName

	string

	OPC

	Name of the OPC system that will be used for identification

Nodes Loader

These are config related to nodes loading methods and selection rules.

Note

If no selection rules are defined then ALL nodes of type Variable are loaded automatically.
If more selection rules are defined they Add/Excludes nodes (of type Variable) based on the following priority order: whiteList,
blackList, notContain, contains, matchRegEx.

	Config Key

	type

	Default

	Notes

	browseNodes

	bool

	true

	If true load nodes via recursively drilling trough the server tree, it may use many network requests. If false will load nodes from an xml file, according to the Nodeset2 OPC specification.

	targetIdentifier

	string

	DisplayName

	Node attribute that undergoes selection rules, it can be: displayname, browsename, nodeid. In case of nodeid is necessary to specify also the prefix like i=123 or s=VarName. It is case insensitive.

	filename

	string

	nodeset.xml

	Path to the xml file where the nodes are defined. Necessary if browseNodes = false.

	whiteList

	string[]

	empty

	Accept all nodes with targetIdentifier exactly equal to one of the string in the list. Runs first.

	blackList

	string[]

	empty

	Exclude nodes with targetIdentifier exactly equal to one of the string in the list. Runs second.

	notContain

	string[]

	empty

	Excludes nodes with targetIdentifier containing one of the string in the list. Runs before contains and matchRegEx.

	contains

	string[]

	empty

	Accept nodes with targetIdentifier containing one of the string in the list. Runs before matchRegEx.

	matchRegEx

	string[]

	empty

	Accept nodes with targetIdentifier matching one of the regular expression string in the list. Runs last.

gRPC-Connector Configs

These configs are related to the gRPC Connector, they must be placed under the key gRPC as follows:

{
 // Other config here

 "gRPC" :{
 "port" : 5051
 }
}

	Config Key

	type

	Default

	Notes

	host

	string

	localhost

	host name on the network.

	port

	int

	5051

	Port on which to listen for client requests

Kafka-Connector Configs

These configs are related to the Kafka-Connector, they must be placed under the keys kafkaProducer and kafkaRPC,
there are also two root level configs: KafkaSchemaRegistryURL and KafkaServers, as in the example:

{
 // Other config here

 opcSystemName : "OPC",
 KafkaSchemaRegistryURL : "localhost:8081",
 KafkaServers : "localhost:9092",

 kafkaProducer : {
 // Producer conf
 },
 kafkaRPC : {
 // RPC conf
 }
}

Root level cofigs:

	Config Key

	type

	Default

	Notes

	opcSystemName

	string

	OPC

	System name is a core variable, it will be used to evaluate the topic names for nodes publishing, see Kafka-Connector

	KafkaSchemaRegistryURL

	string

	localhost:8081

	Endpoint of the schema registry

	KafkaServers

	string

	localhost:9092

	Comma separated list of kafka brokers. These will be set for the producer and the consumer of the OPC-Proxy, this can be overidden, see below.

kafkaProducer:

	Config Key

	type

	Default

	Notes

	BootstrapServers

	string

	localhost:9092

	Comma separated list of Kafka brokers endpoints. If not set, this will be set to the value of KafkaServers.

	BatchNumMessages

	int

	10000

	See Confluent producer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages]

	LingerMs

	int

	100 [ms]

	See Confluent producer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages]

	QueueBufferingMaxKbytes

	int

	1048576 [Kbytes]

	See Confluent producer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages]

	QueueBufferingMaxMessages

	int

	100000

	See Confluent producer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages]

	MessageTimeoutMs

	int

	300000

	See Confluent producer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages]

	EnableIdempotence

	bool

	false

	See Confluent producer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages]

	RetryBackoffMs

	int

	100 [ms]

	See Confluent producer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages]

	MessageSendMaxRetries

	int

	2

	See Confluent producer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages]

kafkaRPC:

All the non reported kafka consumer configurations are set to default values.

	Config Key

	type

	Default

	Notes

	BootstrapServers

	string

	localhost:9092

	Comma separated list of Kafka brokers endpoints. If not set, this will be set to the value of KafkaServers.

	GroupId

	string

	OPC

	Group ID of the RPC kafka consumer. No other consumer can have this group ID in the whole system. If not set, default is to be set to opcSystemName.

	enableKafkaRPC

	bool

	true

	Enable the RPC-style comunication trough kafka topics.

	EnableAutoCommit

	bool

	true

	See Confluent consumer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs]

	EnableAutoOffsetStore

	bool

	true

	See Confluent consumer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs]

	AutoCommitIntervalMs

	int

	5000 [ms]

	See Confluent consumer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs]

	SessionTimeoutMs

	int

	10000 [ms]

	See Confluent consumer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs]

	AutoOffsetReset

	string

	latest

	See Confluent consumer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs]

	EnablePartitionEof

	bool

	false

	See Confluent consumer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs]

	FetchWaitMaxMs

	int

	1000 [ms]

	See Confluent consumer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs]

	FetchMinBytes

	int

	1

	See Confluent consumer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs]

	HeartbeatIntervalMs

	int

	3000 [ms]

	See Confluent consumer docs [https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs]

InfluxDB-Connector Configs

Getting Started

	Read the Requirements before starting.

	Getting started with Run With Docker tutorial.

	Getting started with Build Your Proxy tutorial, if you want to compile your code.

	Customize your OPC-Proxy with the Configuration options.

Requirements

This library is written in C#, so you would need to install Microsoft .Net Core framework on your machine.
This step is not necessary in case you use the provided Docker image of the standalone application.
You do need it if you want to write a custom OPC-Proxy, in which case you would need to build the library
into an executable.

Note

There are two ways to get up and running: using the docker image or compiling the code.
A standalone OPC-Proxy [https://github.com/opc-proxy/opcProxy-Standalone] is provided in both cases,
this has already the basic functionality and just need to be configured.

In case you want to build your own custom application you would need the following:

	.NET Core >= 3.1 following the description here [https://dotnet.microsoft.com/download]

	Your favourite OPC test server

	Git

OPC Test Server

This library is an OPC-client which is quite useless without an OPC-server to connect to.
It is very usefull to have a test OPC-server that you can configure and run to quicly check
and play arount with the OPC-Proxy library.

There are many opensource (and proprietary) library to write your own server,
we reccomend two, that are decently complete and easy to use:

	The Python library (this is the default for all the examples)

	The NodeJS library

Setup an OPC-Server with Python

The Python based OPCUA library is maybe not the most complete but certainly one of the
simplest to get up and running. Install the module:

pip install opcua

Copy and paste the server example from this repository [https://github.com/FreeOpcUa/python-opcua/blob/master/examples/server-minimal.py] into a file,
call it for example server-minimal.py, for completeness we report the file below:

server-minimal.py

import sys
sys.path.insert(0, "..")
import time

from opcua import ua, Server

if __name__ == "__main__":

 # setup our server
 server = Server()
 server.set_endpoint("opc.tcp://0.0.0.0:4840/freeopcua/server/")

 # setup our own namespace, not really necessary but should as spec
 uri = "http://examples.freeopcua.github.io"
 idx = server.register_namespace(uri)

 # get Objects node, this is where we should put our nodes
 objects = server.get_objects_node()

 # populating our address space
 myobj = objects.add_object(idx, "MyObject")
 myvar = myobj.add_variable(idx, "MyVariable", 6.7)
 myvar.set_writable() # Set MyVariable to be writable by clients

 # starting!
 server.start()

 try:
 count = 0
 while True:
 time.sleep(1)
 count += 0.1
 myvar.set_value(count)
 finally:
 #close connection, remove subcsriptions, etc
 server.stop()

Run it:

python server-minimal.py

This runs an OPC-server on port 4840 that expose an ever increasing variable of type Double called MyVariable.
Now you need to run the OPC-Proxy to listen for that variable changes.

Setup the NodeJS OPC-Server

If you are familiar with NodeJS, a quite good library to check out is the Node-OPCUA [http://node-opcua.github.io/].
For this you need to install NodeJS [https://nodejs.org/en/] and NPM [https://www.npmjs.com/], once you have done it is quite simple:

git clone git@github.com:node-opcua/node-opcua-sampleserver.git
cd node-opcua-sampleserver
npm install
node server.js

This will start a server on port: 26543 and will expose two variables, one called Temperature and the other MyVariable2.

Run With Docker

Docker is a way to distribute self-contained applications easily.
We provide a Docker image for the Community Edition that you can very easily
install and upgrade on your servers. Your machine needs to have the Docker Engine Communiti Edition (CE) installed
first. Refer to the docker installation page [https://docs.docker.com/install/linux/docker-ce/ubuntu/]

Download

docker pull openscada/opc-proxy

This will pull an image with the .NET framework dependencies already installed and with a compiled executable.
The image is built from this repository [https://github.com/opc-proxy/opcProxy-Standalone], it contains
a standalone opc-proxy that can provide all supported connectors endpoint, Kafka, InfluxDB, gRPC.

Configure

Create a configuration file:

host directory to share with the docker container
mkdir opcProxyConfigs
the configuration file must be called "proxy_config.json"
touch opcProxyConfigs/proxy_config.json

Edit the config:

/* proxy_config.json */
{
 "opcServerURL":"opc.tcp://localhost:4840/freeopcua/server/",

 "loggerConfig" :{
 "loglevel" :"debug"
 },

 "nodesLoader" : {
 "targetIdentifier" : "browseName",
 "whiteList":["MyVariable"]

 },
 "grpcConnector" : false,
 "influxConnector" : false,
 "kafkaConnector": false
}

This will tell the OPC-Proxy that:

	Needs to connect to an OPC server at the specified URL, we use a python test server as described in Setup an OPC-Server with Python,
if you are using another test server you need to update that line.

	The nodesLoader here will match against a whitelist all nodes of the server, it will look for a Node with BrowseName attribute (see OPC Data Structure)
equals to MyVariable, which is default for our test server.

	The log level is set to DEBUG, so that we will see the output of the variable changing.

	All connectors are set to false, meaning that this proxy will only connect to the opc-server and nothing more.

Setup a docker container:

cd opcProxyConfigs
Env variable to make easier the next command
OPC_LOCAL_CONF=$(pwd)

docker create \ # (1)
--name proxy_test \ # (2)
--network="host" \ # (3)
-v ${OPC_LOCAL_CONF}:/app/configs \ # (4)
openscada/opc-proxy # (5)

below the same command as above but in one line (copy-paste friendly)
docker create --name proxy_test --network="host" -v ${OPC_LOCAL_CONF}:/app/configs openscada/opc-proxy

This is quite a long command, let’s brake it and see what it means:

	It creates a container of the image in (5) named as defined in (2).

	In (3) set the localhost reference inside the container to point to the image host machine,
so one can use in the config file localhost to reference to a service running on the host machine.
If you would like to use the default docker networking option then you would need to find the IP of the docker network bridge,
more details in the Docker guide Configure Networking [https://docs.docker.com/network/].

	Line (4) is the most important, here we are mounting an external volume to the docker container, the syntax is simple:
-v absolute_path_to_host_dir : mirror_dir_in_container, now all the content of the host_dir will be available to the docker
container dynamically. Here we want to pass the directory we just created that contains the configuration file.

Warning

the volume path must be an absolute path from the /, even if the dir does not exist docker will not output an error.

Tip

Docker containers must have different names, so unless you remove the container (docker rm)
you must change the name.

Run the Container

First you need to start your OPC test server (see OPC Test Server), then you can run the docker container:

start the container and attach output to STDIN, close with Ctrl-C
docker start -i proxy_test

This should output something like this:

2020-01-08 17:05:53.5762|INFO|OPCclient|Creating Application Configuration.
2020-01-08 17:05:54.1004|WARN|OPCclient|Automatically accepting untrusted certificates. Do not use in production. Change in 'OPC.Ua.SampleClient.Config.xml'.
2020-01-08 17:05:54.1004|INFO|OPCclient|Trying to connect to server endpoint: opc.tcp://localhost:4840/freeopcua/server/
2020-01-08 17:05:54.3017|INFO|OPCclient|Selected endpoint uses the following security policy: None
2020-01-08 17:05:54.3017|INFO|OPCclient|Creating a session with OPC UA server.
2020-01-08 17:05:54.3495|INFO|serviceManager|Loading nodes via browsing the OPC server...
2020-01-08 17:05:54.3765|INFO|OPCclient|Surfing recursively trough server tree....
2020-01-08 17:05:54.5011|INFO|cacheDB|Number of selected nodes: 1

Usefull Docker Commands

start container in the background
docker start proxy_test

stop container
docker stop proxy_test

restart container (usefull when edit config)
docker restart proxy_test

list running container
docker ps

list all containers
docker ps -a

Remove container
docker rm __container_name__

remove image
docker rmi __image_name__

Build Your Proxy

In case you want to add your own feature to the proxy or not familiar with docker,
here we explain all the steps needed to write and compile to executable your own proxy.

We are going to build from scratch a proxy very similar to the one in the standalone [https://github.com/opc-proxy/opcProxy-Standalone]
repository.

Install .NET

If you havn’t done it yet, and especially if you are using a Linux machine.
You can find instruction on how to do it on the Microsoft Website [https://dotnet.microsoft.com/download].
You will need:

	.NET Core >= 3.1

	We suggest to install all three library: .NET core SDK, .NET core Runtime, ASP .NET core runtime.

Start with a clone Project

Probably the easiest is to clone the standalone repository and to take it as starting point.

git clone git@github.com:opc-proxy/opcProxy-Standalone.git
cd opcProxy-Standalone/

Now build it:

dotnet build

Now you can jump to Add a Configuration file and continue from there.

Create a project from scratch

Here we describe in steps how to create a .NET project that can be compiled to executable
and runs a basic opc-proxy. You can get the same result by cloning the standalone repository
described in Start with a clone Project section.

Crate a new blank project:

dotnet new console --name myproxy
cd myproxy

This is a scaffolding command, which created a directory with a file Program.cs and a configuration file myproxy.csproj.
Now you can compile this “hello world” program and run it like this:

dotnet build
dotnet run

The console should output Hello World!

Install OPC-Proxy libs

The library can be installed using the package manager of .NET, nuget [https://www.nuget.org/]. In this demo we will use
all the suppoted packages, of course you can install only the one you need, the following command will install their lastest
version:

dotnet add package opcProxy.core
dotnet add package opcProxy.GrpcConnector
dotnet add package opcProxy.InfluxDBConnector
dotnet add package opcProxy.KafkaConnector

Modify the Program

Open the file Program.cs and edit it like below:

using System;
using OpcProxyCore;

namespace myproxy
{
 class Program
 {

 static int Main(string[] args)
 {
 // instantiaing the manager,
 // this will load configuration from file or args
 serviceManager manager = new serviceManager(args);

 // This runs the OPC-Proxy manager with all core
 // functionalities: connects to server, monitor items...
 manager.run();
 return 0;
 }

 }
}

Now build with dotnet build, there should be no error.

Add a Configuration file

Configuration can only be given via JSON file format. A configuration file is necessary, the
program will stop otherwise. The default config file name is proxy_config.json and the program look
for it in the directory where you run it. You can change the path or the name of the config file via the
--config path_to_file flag at run time.

Create the following file (it is already there in case you are cloning the repo) in the main directory and name it proxy_config.json:

/* proxy_config.json */
{
 "opcServerURL":"opc.tcp://localhost:4840/freeopcua/server/",

 "loggerConfig" :{
 "loglevel" :"debug"
 },

 "nodesLoader" : {
 "targetIdentifier" : "browseName",
 "whiteList":["MyVariable"]

 }
}

This will tell the OPC-Proxy that:

	Needs to connect to an OPC server at the specified URL, we use a python test server as described in Setup an OPC-Server with Python,
if you are using another test server you need to update that line.

	The nodesLoader here will match against a whitelist all nodes of the server, it will look for a Node with BrowseName attribute (see OPC Data Structure)
equals to MyVariable, which is default for our test server.

	The log level is set to DEBUG, so that we will see the output of the variable changing.

There are many configuration options and possibilities for loading nodes, they are described in detail in the Configuration section.

Run The Proxy

Before actually running the program we need two things:

	An additional config file. Copy this file [https://github.com/opc-proxy/opcProxy-Standalone/blob/master/Opc.Ua.SampleClient.Config.xml] from the
standalone repository and place it in the main directory (not needed if you cloned it). The file name is important, so keep same naming Opc.Ua.SampleClient.Config.xml.
Soon this will not be needed anymore, refer to issue #17 [https://github.com/opc-proxy/opc-proxy-core/issues/17].

	Run your favourite test opc-server. Remember the configuration we used will only work for the Python test server.

Now you can simply do:

dotnet run
Or for a custom config file
dotnet run --config __path_to_file__

Press Ctrl-C to end the process.

Adding Connectors

Up to now the OPC-Proxy would only connect to the opc-server, browse its variable tree and subscribe
to change of the variables that match the nodeLoader criteria. Now we will add connectors that
will allow Read, Write, Subscribe acess to the external world.

If you followed the Start with a clone Project section you can add connectors via config file, by adding the following
options:

{
 /* some config.... */

 "grpcConnector" : false,
 "influxConnector" : false,
 "kafkaConnector": false
}

Turnig true/false those switches you can enable/disable the corresponding connector.
You can find more details on each of these connectors and their configurations in the Connectors section.

If you followed Create a project from scratch instead, then to add connectors you need to modify the Program.cs.
Any connector must implement the OPC-Proxy interface so independently of its implementation you can add any connector as follows:

// load the library at the beginning of the file
using OpcGrpcConnect;
using OpcInfluxConnect;
using opcKafkaConnect;

 .
 .
 .
// Initialize and add the connectors to the serviceManager
// before the call to "manager.run();"

HttpImpl opcHttpConnector = new HttpImpl();
manager.addConnector(opcHttpConnector);

InfluxImpl influx = new InfluxImpl();
manager.addConnector(influx);

KafkaConnect kafka = new KafkaConnect();
manager.addConnector(kafka);

You can find more details on each of these connectors and their configurations in the Connectors section.

Note

The InfluxDB and Kafka connectors will not work if the respective servers are not running.

Index

 nav.xhtml

 Table of Contents

 		
 The OPC-Proxy Project

_static/GitHub-Mark-120px-plus.png

_static/plus.png

_static/file.png

_static/minus.png

