
OPC-Proxy
Release 0.0

Ale

Jan 17, 2020

CONCEPTS

1 Jump to Concept 3
1.1 Introduction . 3
1.2 Connectors . 5
1.3 Extend Connectors . 9
1.4 Configuration . 10
1.5 Getting Started . 13

i

ii

OPC-Proxy, Release 0.0

The OPC-Proxy is a set of libraries aimed to facilitate communication between the industial autonomation world and
big data tools. It is a gateway to put in comunication a network/server that speaks the OPC protocol with a network
that supports a variety of other protocols. The supported protocols/services to date are: gRPC, Kafka and InfluxDB.

This Proxy was developed to allow full duplex comunication between an OPC-server and any of its clients, one of the
main features is that it support an RPC-style type of communication, so that to allow reads and writes to and from an
OPC-server.

This tool uses quite a few opensource libraries, we are gratefull to the opc-foundation, the lite-DB, the Confluent-
platform, the gRPC framework, whitout which it would have been impossible to reach this result.

CONCEPTS 1

https://github.com/OPCFoundation/UA-.NETStandard
https://www.litedb.org/
https://www.confluent.io/
https://www.confluent.io/
https://grpc.io/

OPC-Proxy, Release 0.0

2 CONCEPTS

CHAPTER

ONE

JUMP TO CONCEPT

• The OPC-Proxy core functionality Introduction

• Description of supported Connectors

• How to Write Your Own Connector

• Configuration options

1.1 Introduction

1.1.1 What is OPC-Proxy?

The OPC-Proxy allows to build and deploy a customized IoT gateway to connect any OPC server with your network
of microservices or cloud. This library is suitable for monitoring and control of devices, while tipically vendors of IoT
gateways only offer monitoring. We focused on defining a protocol for bidirectional communication exposing the user
to a simple API, so that one can read, but also write values to the OPC server without knowing details about OPC.

Features:

• Suitable for monitoring and controlling devices.

• Simple API.

• Reliable OPC client build with the OPC-foundation standard library.

• Load nodes from an XML file (Nodeset XML spec) or simply browsing the server

• Powerful Nodes loading selection options

• Modular design with external connectors that can be added, extended and customized.

• Supported connectors: gRPC, Kafka, InfluxDB.

• Written in C#.

Here we describe the features of the OPC-Proxy core library.

3

https://github.com/OPCFoundation/UA-.NETStandard
https://github.com/opc-proxy/opc-proxy-core

OPC-Proxy, Release 0.0

1.1.2 Basics of OPC

OPC is an opensource protocol used in industrial autonomation. It allows real time communication beween rugged
industrial devices. The full specification is more than a 1000 pages and is quite complex (you can find it here), it
describes several use cases and different comunication options, here we aim to support OPC UA. In this section we try
to summarize briefly the important notions that are needed in the following.

OPC Data Structure

Data in an OPC server is organized in a tree structure, similar to a filesystem, there are folders, which contain objects,
each object can contain variables. Each variable has an associated data type and various references. Now, one can
access any item of the tree, each item is generalized as a Node. To access any node one needs to know its node id and
the namespace under which it is stored. The OPC-proxy can interact only with nodes related to variables. Each node
that is related to a variable has the following properties:

Variable Node properties

NodeID examples are “ns=3;s=var_name” for string identifier and “ns=3;i=1234” for integer identi-
fier, where ns is the namespace. Weather the identifier is a string or a number depends on the server
implementation.

BrowseName Server given name, it is usually related to the variable name, but it can contain additional
caracters or can be truncated. It depends on the server implementation.

DisplayName Human readable variable name, this is usually the name that is displayed to the user.

Value Value of the variable.

Loading Nodes

A client does not in general know the node ids of the variables on which wants to operate on, usually they are strings
related to the variable name, but in general these can be random integers, depending on the implementation of the
server. There are two ways to make an opc-proxy aware of the node ids for the relevant variables, one can feed an
XML file produced from the server with all nodes using the OPC UA Nodeset XML schema. Or one can simply
browse each branch of the tree for variable nodes using consequent network calls, this last option is referred to as
browsing. See configuration of the Nodes Loader for more info on the nodes selection criteria.

Warning: Browsing feature: The use of browsing feature for a server that contains many variables may lead to
a large amout of network requests and can take long time (up to minutes). This of course depends on the server
implementation.

Read, Write and Subscribe

An OPC client can read, write and subscribe to change of a server variable. Both read and write are single network
calls, one can specify to read and write multiple variables at the same time. The OPC-proxy only support to read and
write values on variable nodes, does not support any other attribute. Once the OPC-proxy is connected to the server
and the session is open, one can monitor a list of variables for their change, these are called monitored items, the server
will push those change when they occur.

4 Chapter 1. Jump to Concept

https://reference.opcfoundation.org/v104/

OPC-Proxy, Release 0.0

Behaviours

Session Once the session with the opc-server is established, the OPC-proxy will the care of keeping the
connection alive, in case of network interruption the OPC-proxy will keep trying to reconnect at user
defined intervals.

Node Publishing once one subscribe for monitor a list of variables, the OPC-server will push their up-
dated values and statuses at intervals to save network requests. The server will aggregate all the
change for all the variables within a certain user defined time, to minimize the network requests it
will send all the changes within the interval in a single network call. The OPC-proxy gives the user
the possibility to set this time intervall.

Node Monitoring The OPC-proxy will automatically monitor (subscribe to change) all nodes specified
in the configuration file.

Read and Write The OPC-proxy will only allow to read and write the nodes specified in the configura-
tion file.

Memory Cache The OPC-proxy chaches the latest value for each variable in a in-memory database, so
it will always return the value from cache for each read request made by the client and will not hit
the OPC-server.

1.1.3 Connectivity Modules

The OPC-proxy can connect with only one OPC-server, on the other hand it can put the OPC-server in comunication
with a large number of clients, each of these clients can use its own favourite protocol. The OPC-proxy has a modular
design, to add new capabilities one simply needs to add the corresponding connector. Connectors are modules for the
OPC-proxy that implement an endpoint for a communication protocol, they can leverage the OPC-proxy core library
to interact with the OPC-server. To write your own connector see the Extend Connectors section.

The currently supported connectors are:

• gRPC: Implements an RPC type of comunication between a server and a client over HTTP. It uses the
gRPC framework, see more details in the gRPC Connector section.

• Kafka: Implements a data stream to a Kafka topic trught the Kafka producer library. Implements an RPC
type of comunication trough Kafka topics using the JSON-RPC protocol, it accepts write requests. More
details in the Kafka connector section.

• InfluxDB: Submits a stream of metrics to InfulxDB on variables change. More details in the InfluxDB
connector section.

1.2 Connectors

The OPC-proxy can connect with only one OPC-server, on the other hand it can put the OPC-server in comunication
with a large number of clients, each of these clients can use its own favourite protocol. The OPC-proxy has a modular
design, to add new capabilities one simply needs to add the corresponding connector. Connectors are modules for the
OPC-proxy that implement an endpoint for a communication protocol, they can leverage the OPC-proxy core library
to interact with the OPC-server. To write your own connector see the Extend Connectors section. In this section we
describe the currenlty supported connectors: gRPC, Kafka and InfluxDB.

An OPC-Proxy can run multiple connectors, so for example one can push metrics to InfluxDB while serving a gRPC
or Kafka (or both) endpoint.

1.2. Connectors 5

https://www.influxdata.com/

OPC-Proxy, Release 0.0

1.2.1 gRPC Connector

gRPC is a modern open source high performance RPC framework, initially developed at Google. It is very flexible
and userfriendly, it can easily put in communication different services independently on the programming language
used. For more information visit grpc.io.

As a comunication layer gRPC uses HTTP2, while it uses protocol buffers as serialization/deserialization and Interface
Definition Language.

The OPC-Proxy gRPC-Connector repository can be found at gitHub-GrpcConnector. You find all its configuration
options in the Configuration section.

Protocol Definition

A client can initiate Read request and a Write request. In future also a subscritpion to server push on variable change
will be available. The read/write request and response are defined in the proto-config-file that you can download from
this gitHub-repo, you can use the proto-config to generate automatically the code needed for the comunication in
almost any language.

A node is represented as:

NodeValue : {
name : string, // name of the node
value : string, // is always a string you need to deserialize it
timestamp : string, // format ISO 8601 - UTC
type : string // int, bool, float, string

}

The value of the nodes is always serialized to string, is you responsability to deserialize it to the type specified.

A read request and its response is defined as:

ReadOpcNodes(ReadRequest) returns (ReadResponse)
// where:
ReadRequest : string[]; // list of node names to be read

ReadResponse : {
nodes : NodeValue[], // list of read nodes
isError : bool,
errorMessage : string

}

The data exchanged in a write request is:

WriteRequest : {
name : string,
value : string

}

WriteResponse : {
isError : bool,
errorMessage : string

}

The value of the write request need to be serialized always to a string, the OPC-Proxy knows what is the right type
and will take care of the conversion. In case of conversion error or OPC-server error it will return an error message
(error message still in preparation see issue #1)in the response and the isError boolean will be true. A successful
write request will have a isError = false.

6 Chapter 1. Jump to Concept

https://grpc.io/
https://developers.google.com/protocol-buffers/
https://github.com/opc-proxy/GrpcConnector
https://github.com/opc-proxy/GrpcConnector/blob/master/opcGrpcConnect/opc.grpc.connect.proto
https://github.com/opc-proxy/GrpcConnector/issues/1

OPC-Proxy, Release 0.0

gRPC Client Example

An example client based on NodeJs is provided in the gitHub-OPC-Node-Client-Example Follow the instruction re-
ported there.

First run the OPC-Proxy configured with a gRPC endpont, this example assumes an OPC-Proxy running on
port:5051, which is default, it also assume that the OPC-server is the Python-OPCUA, or in general that there
will be an exposed variable called MyVariable.

The example will read and write a value to MyVariable of the python test server example. The value of MyVariable
is always increasing by 0.1 every half a second. The client will read its value and reset it to 1.

Keep in mind that the OPC-server will push variables values (if they change) to the OPC-Proxy with rate of 1 sec, you
can query the OPC-Proxy much faster than that, the write request will be forwared to the server immediately, but read
request will read the latest value from the memory cache of the OPC-Proxy.

1.2.2 Kafka-Connector

Apache Kafka is an open-source stream-processing platform, it is the de facto standard for high-throughput, low-
latency handling of real-time data feeds.

The Kafka-Connector add the ability to the opc-proxy to stream data to a kafka server. It supports:

• Sending a message on a topic when a node value changes (notification form opc-server)

• Bidirectional comunication, read/write and possibly more, with the PLC using an RPC protocol. The
protocol supported is JSON-RPC-2.0.

This library uses the Avro serialization library, which allows great flexibility in defining the structure of the data
exchanged. As storage engine for data schemas we are using the Confluent SchemaRegistry, which is necessary for
this library. In the future a JSON based serialization option will be available and so the additional complexity of a
schema registry will not be required anymore (see issue #4).

The OPC-Proxy Kafka-connector repository can be found at gitHub-KafkaConnectorLib. You find all its configuration
options in the Configuration section.

Data Streams

The Kafka-Connector will by default define three topics the name of which depends on the configuration variable
opcSystemName:

• The Metrics-topic, the one containing a stream of nodes value on change, is named as the opcSystemName
configuration variable.

• The RPC-request topic, the one where all the (write) request are send, is named opcSystemName with
appended suffix -request.

• The RPC-response topic, the one where all the RPC-style responses are served, is named opcSystemName
with appended suffix -response.

Note: Keep in mind that your consumer clients need to have different group ID if you want all of them to receive
updates. Also Do Not assign same group ID as the the OPC-Proxy to any other clients.

1.2. Connectors 7

https://github.com/opc-proxy/OPC-Node-Client-Examples/tree/master/Examples/gRPC
https://github.com/FreeOpcUa/python-opcua
https://kafka.apache.org/
https://www.jsonrpc.org/specification
https://avro.apache.org/
https://www.confluent.io/confluent-schema-registry/
https://github.com/opc-proxy/KafkaConnectorLib/issues/4
https://github.com/opc-proxy/KafkaConnectorLib

OPC-Proxy, Release 0.0

Serialization Deserialization

In Kafka messages are organized as a key:value pair. Key and Value can be serialized/deserialized with independent
serializers, we choose to serialize Keys using the standard string-serializer, so the message key will always be a
strings, while the values are serialized using the Avro framework.

In Avro one describes the data structure in a JSON-schema, the schema is stored in a schema-registry server, each
message has an ID that refer to that schema, so each client can deserialize the messages dinamically. One can add a
data type or modify an existing schema and the client will be able to properly deserialize the data without the need of
additional code. So changing data structure (if backwords compatible) will not break clients. It also give flexibility,
one can configure it to send messages with different data content on the same topic and the consumer will always be
able to deserialize it correctly. Here we use this last property, independently on the Node value type, the consumer
will always get the value properly deserialized (and already with the right type) depending on which language you are
using.

For the Metrics-topic, the one where are streamed the nodes values on change, we use as Kafka message Key the
node variable name, while as Kafka message Value we use the following Avro schema:

{
type: 'record',
name: datatype + 'Type',
fields:[

{
name:'value',
type: datatype

}
]

}

Where datatype can be: string, double, float, boolean, int, long.

Kafka-RPC

For the RPC-style comunication we are using Kafka as a simple message broker, the default configuration of the
producer and consumer of the RPC-topics are such that the comunication between the OPC-server and your client
is preformed with latency of the order of 10 ms. The protocol used used for this comunication is defined in the
JSON-RPC spec. Even tough Kafka might seems inadequate for an RPC-style comunication, we find that it makes
communication in a system (with many microservices) simpler and more flexible, it is a way to standardize comms,
allowing for example a kafka-stream or a Storm-bolt to write easily to an OPC-server.

You can find the Avro schema used for the RPC-request and RPC-response topics at gitHub-RPC-Schemas. We
tried to make it as close as possible to the original spec, but there are a few differences. The RPC-request kafka
message-key is a string and is controlled by the client, the Kafka-Connector does nothing with it except making sure
that the corresponding RPC-response will have the same message-key. A request message will look like:

// Request
{

method : string,
params : string[] // list of strings
id: long or null

}

Where the only method supported by now is write (but in the future might be more) and params is expected to
contain a list with two strings, the first one representing the name of the node, the second one its value. The Kafka-
Connector will take care of serializing the value from string to the correct data type expected by the OPC-server. The
id if provided will be forwarded to the response, in case of null then the Kafka-Connector will return the Kafka

8 Chapter 1. Jump to Concept

https://avro.apache.org/
https://www.jsonrpc.org/specification
https://github.com/opc-proxy/OPC-Node-Client-Examples/tree/master/Examples/Kafka/AvroSchemas

OPC-Proxy, Release 0.0

offset as id in the response, in this way you can let Kafka worry to generate system-wide unique ids for you (well, in
this case topic-wide unique ids), you can collect the offset at request time, tide it to the topic and store it memory, then
wait for the corresponding response.

A response message value in the RPC-response topics, would look like:

// Response
{

result : string or null,

error : { // != null only if an error exist
code : integer,
message : string,

}

id: long
}

Given that the only supported method is “write”, the result will be a string representing the written node value to
the OPC-server, and will differ from null only in case of successful write operation. The error object will only be
present in case of an error (when “result” is null). The id is either forwarded from the request or the Kafka-Offset of
the related request-message in the RPC-request topic.

Note: If the RPC-request topic has more than one partition and the id is set to null in a request, the response id
will be ambiguous. Please inform us if you have such a use case.

Kafka-Connector Client Example

You can find an example of kafka client for NodeJs in this repository gitHub-NodeKafka_client. Here we assume as
opc test-server the OPCUA-Python-server. Using Node we show how to connect to a published data stream of nodes
change on kafka, and how to interface to the kafka-RPC for writing nodes values.

1.2.3 InfluxDB

InfluxDB is an open-source time series database optimized for fast, high-availability storage and retrieval of time
series data in fields such as operations monitoring, application metrics, Internet of Things sensor data, and real-time
analytics.

• Library used

• pushing metrics

1.3 Extend Connectors

Warning: This section is under construction.

1.3. Extend Connectors 9

https://github.com/opc-proxy/OPC-Node-Client-Examples/tree/master/Examples/Kafka
https://www.influxdata.com/

OPC-Proxy, Release 0.0

1.4 Configuration

Configuration can be done via JSON file, the default file name is proxy_config.json. All the config keys that
are not recognized will be ignored, if no configuration is provided for a parameter its default value will be loaded. An
example of configuration file can be the following:

{
"opcServerURL":"opc.tcp://localhost:4840/freeopcua/server/",

"loggerConfig" :{
"loglevel" :"info"

},

"nodesLoader" : {
"targetIdentifier" : "browseName",
"whiteList":["MyVariable"]

},
"gRPC" :{

"port" : 5051
}

}

1.4.1 OPC related Configs

These configs are related to core features and define how the opc client must behave. They must be placed at the root
level of the json file.

Config Key type Default Notes
opcServerURL string none OPC server TCP URL endpoint
reconnectPeriod int 10 [s] Time interval [seconds] to wait before retry to reconnect

to OPC server
publishingInterval int 1000 [ms] This is a subscription parameter, time intervall [mil-

lisecond] at which the OPC server will send node values
updates.

opcSystemName string OPC Name of the OPC system that will be used for identifi-
cation

Nodes Loader

These are config related to nodes loading methods and selection rules.

Note: If no selection rules are defined then ALL nodes of type Variable are loaded automatically. If more selection
rules are defined they Add/Excludes nodes (of type Variable) based on the following priority order: whiteList,
blackList, notContain, contains, matchRegEx.

10 Chapter 1. Jump to Concept

OPC-Proxy, Release 0.0

Config Key type Default Notes
browseNodes bool true If true load nodes via recursively drilling trough the

server tree, it may use many network requests. If false
will load nodes from an xml file, according to the Node-
set2 OPC specification.

targetIdentifier string DisplayName Node attribute that undergoes selection rules, it can be:
displayname, browsename, nodeid. In case of
nodeid is necessary to specify also the prefix like
i=123 or s=VarName. It is case insensitive.

filename string nodeset.xml Path to the xml file where the nodes are defined. Neces-
sary if browseNodes = false.

whiteList string[] empty Accept all nodes with targetIdentifier exactly
equal to one of the string in the list. Runs first.

blackList string[] empty Exclude nodes with targetIdentifier exactly
equal to one of the string in the list. Runs second.

notContain string[] empty Excludes nodes with targetIdentifier contain-
ing one of the string in the list. Runs before contains
and matchRegEx.

contains string[] empty Accept nodes with targetIdentifier containing
one of the string in the list. Runs before matchRegEx.

matchRegEx string[] empty Accept nodes with targetIdentifier matching
one of the regular expression string in the list. Runs
last.

1.4.2 gRPC-Connector Configs

These configs are related to the gRPC Connector, they must be placed under the key gRPC as follows:

{
// Other config here

"gRPC" :{
"port" : 5051

}
}

Config Key type Default Notes
host string localhost host name on the network.
port int 5051 Port on which to listen for client requests

1.4.3 Kafka-Connector Configs

These configs are related to the Kafka-Connector, they must be placed under the keys kafkaProducer and
kafkaRPC, there are also two root level configs: KafkaSchemaRegistryURL and KafkaServers, as in the
example:

{
// Other config here

opcSystemName : "OPC",

(continues on next page)

1.4. Configuration 11

OPC-Proxy, Release 0.0

(continued from previous page)

KafkaSchemaRegistryURL : "localhost:8081",
KafkaServers : "localhost:9092",

kafkaProducer : {
// Producer conf

},
kafkaRPC : {

// RPC conf
}

}

Root level cofigs:

Config Key type Default Notes
opcSystemName string OPC System name is a core variable, it will be used to eval-

uate the topic names for nodes publishing, see Kafka-
Connector

KafkaSchemaRegistryURLstring localhost:8081Endpoint of the schema registry
KafkaServers string localhost:9092Comma separated list of kafka brokers. These will be

set for the producer and the consumer of the OPC-Proxy,
this can be overidden, see below.

kafkaProducer:

Config Key type Default Notes
BootstrapServers string localhost:9092Comma separated list of Kafka brokers endpoints. If not

set, this will be set to the value of KafkaServers.
BatchNumMessages int 10000 See Confluent producer docs
LingerMs int 100 [ms] See Confluent producer docs
QueueBufferingMaxKbytesint 1048576

[Kbytes]
See Confluent producer docs

QueueBufferingMaxMessagesint 100000 See Confluent producer docs
MessageTimeoutMs int 300000 See Confluent producer docs
EnableIdempotence bool false See Confluent producer docs
RetryBackoffMs int 100 [ms] See Confluent producer docs
MessageSendMaxRetries int 2 See Confluent producer docs

kafkaRPC:

All the non reported kafka consumer configurations are set to default values.

12 Chapter 1. Jump to Concept

https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages
https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages
https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages
https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages
https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages
https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages
https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages
https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ProducerConfig.html#Confluent_Kafka_ProducerConfig_BatchNumMessages

OPC-Proxy, Release 0.0

Config Key type Default Notes
BootstrapServers string localhost:9092Comma separated list of Kafka brokers endpoints. If not

set, this will be set to the value of KafkaServers.
GroupId string OPC Group ID of the RPC kafka consumer. No other con-

sumer can have this group ID in the whole system. If
not set, default is to be set to opcSystemName.

enableKafkaRPC bool true Enable the RPC-style comunication trough kafka topics.
EnableAutoCommit bool true See Confluent consumer docs
EnableAutoOffsetStore bool true See Confluent consumer docs
AutoCommitIntervalMs int 5000 [ms] See Confluent consumer docs
SessionTimeoutMs int 10000 [ms] See Confluent consumer docs
AutoOffsetReset string latest See Confluent consumer docs
EnablePartitionEof bool false See Confluent consumer docs
FetchWaitMaxMs int 1000 [ms] See Confluent consumer docs
FetchMinBytes int 1 See Confluent consumer docs
HeartbeatIntervalMs int 3000 [ms] See Confluent consumer docs

1.4.4 InfluxDB-Connector Configs

1.5 Getting Started

• Read the Requirements before starting.

• Getting started with Run With Docker tutorial.

• Getting started with Build Your Proxy tutorial, if you want to compile your code.

• Customize your OPC-Proxy with the Configuration options.

1.5.1 Requirements

This library is written in C#, so you would need to install Microsoft .Net Core framework on your machine. This step
is not necessary in case you use the provided Docker image of the standalone application. You do need it if you want
to write a custom OPC-Proxy, in which case you would need to build the library into an executable.

Note: There are two ways to get up and running: using the docker image or compiling the code. A standalone
OPC-Proxy is provided in both cases, this has already the basic functionality and just need to be configured.

In case you want to build your own custom application you would need the following:

• .NET Core >= 3.1 following the description here

• Your favourite OPC test server

• Git

1.5. Getting Started 13

https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs
https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs
https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs
https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs
https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs
https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs
https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs
https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs
https://docs.confluent.io/current/clients/confluent-kafka-dotnet/api/Confluent.Kafka.ConsumerConfig.html#Confluent_Kafka_ConsumerConfig_AutoCommitIntervalMs
https://github.com/opc-proxy/opcProxy-Standalone
https://github.com/opc-proxy/opcProxy-Standalone
https://dotnet.microsoft.com/download

OPC-Proxy, Release 0.0

1.5.2 OPC Test Server

This library is an OPC-client which is quite useless without an OPC-server to connect to. It is very usefull to have a
test OPC-server that you can configure and run to quicly check and play arount with the OPC-Proxy library.

There are many opensource (and proprietary) library to write your own server, we reccomend two, that are decently
complete and easy to use:

• The Python library (this is the default for all the examples)

• The NodeJS library

Setup an OPC-Server with Python

The Python based OPCUA library is maybe not the most complete but certainly one of the simplest to get up and
running. Install the module:

pip install opcua

Copy and paste the server example from this repository into a file, call it for example server-minimal.py, for
completeness we report the file below:

server-minimal.py

import sys
sys.path.insert(0, "..")
import time

from opcua import ua, Server

if __name__ == "__main__":

setup our server
server = Server()
server.set_endpoint("opc.tcp://0.0.0.0:4840/freeopcua/server/")

setup our own namespace, not really necessary but should as spec
uri = "http://examples.freeopcua.github.io"
idx = server.register_namespace(uri)

get Objects node, this is where we should put our nodes
objects = server.get_objects_node()

populating our address space
myobj = objects.add_object(idx, "MyObject")
myvar = myobj.add_variable(idx, "MyVariable", 6.7)
myvar.set_writable() # Set MyVariable to be writable by clients

starting!
server.start()

try:
count = 0
while True:

time.sleep(1)
count += 0.1

(continues on next page)

14 Chapter 1. Jump to Concept

https://github.com/FreeOpcUa/python-opcua/blob/master/examples/server-minimal.py

OPC-Proxy, Release 0.0

(continued from previous page)

myvar.set_value(count)
finally:

#close connection, remove subcsriptions, etc
server.stop()

Run it:

python server-minimal.py

This runs an OPC-server on port 4840 that expose an ever increasing variable of type Double called MyVariable.
Now you need to run the OPC-Proxy to listen for that variable changes.

Setup the NodeJS OPC-Server

If you are familiar with NodeJS, a quite good library to check out is the Node-OPCUA. For this you need to install
NodeJS and NPM, once you have done it is quite simple:

git clone git@github.com:node-opcua/node-opcua-sampleserver.git
cd node-opcua-sampleserver
npm install
node server.js

This will start a server on port: 26543 and will expose two variables, one called Temperature and the other
MyVariable2.

1.5.3 Run With Docker

Docker is a way to distribute self-contained applications easily. We provide a Docker image for the Community
Edition that you can very easily install and upgrade on your servers. Your machine needs to have the Docker Engine
Communiti Edition (CE) installed first. Refer to the docker installation page

Download

docker pull openscada/opc-proxy

This will pull an image with the .NET framework dependencies already installed and with a compiled executable.
The image is built from this repository, it contains a standalone opc-proxy that can provide all supported connectors
endpoint, Kafka, InfluxDB, gRPC.

Configure

Create a configuration file:

host directory to share with the docker container
mkdir opcProxyConfigs
the configuration file must be called "proxy_config.json"
touch opcProxyConfigs/proxy_config.json

1.5. Getting Started 15

http://node-opcua.github.io/
https://nodejs.org/en/
https://www.npmjs.com/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://github.com/opc-proxy/opcProxy-Standalone

OPC-Proxy, Release 0.0

Edit the config:

/* proxy_config.json */
{

"opcServerURL":"opc.tcp://localhost:4840/freeopcua/server/",

"loggerConfig" :{
"loglevel" :"debug"

},

"nodesLoader" : {
"targetIdentifier" : "browseName",
"whiteList":["MyVariable"]

},
"grpcConnector" : false,
"influxConnector" : false,
"kafkaConnector": false

}

This will tell the OPC-Proxy that:

• Needs to connect to an OPC server at the specified URL, we use a python test server as described in Setup an
OPC-Server with Python, if you are using another test server you need to update that line.

• The nodesLoader here will match against a whitelist all nodes of the server, it will look for a Node with
BrowseName attribute (see OPC Data Structure) equals to MyVariable, which is default for our test server.

• The log level is set to DEBUG, so that we will see the output of the variable changing.

• All connectors are set to false, meaning that this proxy will only connect to the opc-server and nothing more.

Setup a docker container:

cd opcProxyConfigs
Env variable to make easier the next command
OPC_LOCAL_CONF=$(pwd)

docker create \ # (1)
--name proxy_test \ # (2)
--network="host" \ # (3)
-v ${OPC_LOCAL_CONF}:/app/configs \ # (4)
openscada/opc-proxy # (5)

below the same command as above but in one line (copy-paste friendly)
docker create --name proxy_test --network="host" -v ${OPC_LOCAL_CONF}:/app/configs
→˓openscada/opc-proxy

This is quite a long command, let’s brake it and see what it means:

• It creates a container of the image in (5) named as defined in (2).

• In (3) set the localhost reference inside the container to point to the image host machine, so one can use in
the config file localhost to reference to a service running on the host machine. If you would like to use the
default docker networking option then you would need to find the IP of the docker network bridge, more
details in the Docker guide Configure Networking.

16 Chapter 1. Jump to Concept

https://docs.docker.com/network/

OPC-Proxy, Release 0.0

• Line (4) is the most important, here we are mounting an external volume to the docker container, the syntax is
simple: -v absolute_path_to_host_dir : mirror_dir_in_container, now all the content
of the host_dir will be available to the docker container dynamically. Here we want to pass the directory we
just created that contains the configuration file.

Warning: the volume path must be an absolute path from the /, even if the dir does not exist docker will not
output an error.

Tip: Docker containers must have different names, so unless you remove the container (docker rm) you must change
the name.

Run the Container

First you need to start your OPC test server (see OPC Test Server), then you can run the docker container:

start the container and attach output to STDIN, close with Ctrl-C
docker start -i proxy_test

This should output something like this:

2020-01-08 17:05:53.5762|INFO|OPCclient|Creating Application Configuration.
2020-01-08 17:05:54.1004|WARN|OPCclient|Automatically accepting untrusted
→˓certificates. Do not use in production. Change in 'OPC.Ua.SampleClient.Config.xml'.
2020-01-08 17:05:54.1004|INFO|OPCclient|Trying to connect to server endpoint: opc.
→˓tcp://localhost:4840/freeopcua/server/
2020-01-08 17:05:54.3017|INFO|OPCclient|Selected endpoint uses the following security
→˓policy: None
2020-01-08 17:05:54.3017|INFO|OPCclient|Creating a session with OPC UA server.
2020-01-08 17:05:54.3495|INFO|serviceManager|Loading nodes via browsing the OPC
→˓server...
2020-01-08 17:05:54.3765|INFO|OPCclient|Surfing recursively trough server tree....
2020-01-08 17:05:54.5011|INFO|cacheDB|Number of selected nodes: 1

Usefull Docker Commands

start container in the background
docker start proxy_test

stop container
docker stop proxy_test

restart container (usefull when edit config)
docker restart proxy_test

list running container
docker ps

list all containers
docker ps -a

(continues on next page)

1.5. Getting Started 17

OPC-Proxy, Release 0.0

(continued from previous page)

Remove container
docker rm __container_name__

remove image
docker rmi __image_name__

1.5.4 Build Your Proxy

In case you want to add your own feature to the proxy or not familiar with docker, here we explain all the steps needed
to write and compile to executable your own proxy.

We are going to build from scratch a proxy very similar to the one in the standalone repository.

Install .NET

If you havn’t done it yet, and especially if you are using a Linux machine. You can find instruction on how to do it on
the Microsoft Website. You will need:

• .NET Core >= 3.1

• We suggest to install all three library: .NET core SDK, .NET core Runtime, ASP .NET core runtime.

Start with a clone Project

Probably the easiest is to clone the standalone repository and to take it as starting point.

git clone git@github.com:opc-proxy/opcProxy-Standalone.git
cd opcProxy-Standalone/

Now build it:

dotnet build

Now you can jump to Add a Configuration file and continue from there.

Create a project from scratch

Here we describe in steps how to create a .NET project that can be compiled to executable and runs a basic opc-proxy.
You can get the same result by cloning the standalone repository described in Start with a clone Project section.

Crate a new blank project:

dotnet new console --name myproxy
cd myproxy

This is a scaffolding command, which created a directory with a file Program.cs and a configuration file
myproxy.csproj. Now you can compile this “hello world” program and run it like this:

dotnet build
dotnet run

The console should output Hello World!

18 Chapter 1. Jump to Concept

https://github.com/opc-proxy/opcProxy-Standalone
https://dotnet.microsoft.com/download

OPC-Proxy, Release 0.0

Install OPC-Proxy libs

The library can be installed using the package manager of .NET, nuget. In this demo we will use all the suppoted
packages, of course you can install only the one you need, the following command will install their lastest version:

dotnet add package opcProxy.core
dotnet add package opcProxy.GrpcConnector
dotnet add package opcProxy.InfluxDBConnector
dotnet add package opcProxy.KafkaConnector

Modify the Program

Open the file Program.cs and edit it like below:

using System;
using OpcProxyCore;

namespace myproxy
{

class Program
{

static int Main(string[] args)
{

// instantiaing the manager,
// this will load configuration from file or args
serviceManager manager = new serviceManager(args);

// This runs the OPC-Proxy manager with all core
// functionalities: connects to server, monitor items...
manager.run();
return 0;

}

}
}

Now build with dotnet build, there should be no error.

Add a Configuration file

Configuration can only be given via JSON file format. A configuration file is necessary, the program will stop other-
wise. The default config file name is proxy_config.json and the program look for it in the directory where you
run it. You can change the path or the name of the config file via the --config path_to_file flag at run time.

Create the following file (it is already there in case you are cloning the repo) in the main directory and name it
proxy_config.json:

/* proxy_config.json */
{

"opcServerURL":"opc.tcp://localhost:4840/freeopcua/server/",

"loggerConfig" :{
"loglevel" :"debug"

(continues on next page)

1.5. Getting Started 19

https://www.nuget.org/

OPC-Proxy, Release 0.0

(continued from previous page)

},

"nodesLoader" : {
"targetIdentifier" : "browseName",
"whiteList":["MyVariable"]

}
}

This will tell the OPC-Proxy that:

• Needs to connect to an OPC server at the specified URL, we use a python test server as described in Setup an
OPC-Server with Python, if you are using another test server you need to update that line.

• The nodesLoader here will match against a whitelist all nodes of the server, it will look for a Node with
BrowseName attribute (see OPC Data Structure) equals to MyVariable, which is default for our test server.

• The log level is set to DEBUG, so that we will see the output of the variable changing.

There are many configuration options and possibilities for loading nodes, they are described in detail in the Configu-
ration section.

Run The Proxy

Before actually running the program we need two things:

• An additional config file. Copy this file from the standalone repository and place it in the main directory
(not needed if you cloned it). The file name is important, so keep same naming Opc.Ua.SampleClient.
Config.xml. Soon this will not be needed anymore, refer to issue #17.

• Run your favourite test opc-server. Remember the configuration we used will only work for the Python test
server.

Now you can simply do:

dotnet run
Or for a custom config file
dotnet run --config __path_to_file__

Press Ctrl-C to end the process.

Adding Connectors

Up to now the OPC-Proxy would only connect to the opc-server, browse its variable tree and subscribe to change of the
variables that match the nodeLoader criteria. Now we will add connectors that will allow Read, Write, Subscribe
acess to the external world.

If you followed the Start with a clone Project section you can add connectors via config file, by adding the following
options:

{
/* some config.... */

"grpcConnector" : false,
"influxConnector" : false,

(continues on next page)

20 Chapter 1. Jump to Concept

https://github.com/opc-proxy/opcProxy-Standalone/blob/master/Opc.Ua.SampleClient.Config.xml
https://github.com/opc-proxy/opc-proxy-core/issues/17

OPC-Proxy, Release 0.0

(continued from previous page)

"kafkaConnector": false
}

Turnig true/false those switches you can enable/disable the corresponding connector. You can find more details
on each of these connectors and their configurations in the Connectors section.

If you followed Create a project from scratch instead, then to add connectors you need to modify the Program.cs.
Any connector must implement the OPC-Proxy interface so independently of its implementation you can add any
connector as follows:

// load the library at the beginning of the file
using OpcGrpcConnect;
using OpcInfluxConnect;
using opcKafkaConnect;

.

.

.
// Initialize and add the connectors to the serviceManager
// before the call to "manager.run();"

HttpImpl opcHttpConnector = new HttpImpl();
manager.addConnector(opcHttpConnector);

InfluxImpl influx = new InfluxImpl();
manager.addConnector(influx);

KafkaConnect kafka = new KafkaConnect();
manager.addConnector(kafka);

You can find more details on each of these connectors and their configurations in the Connectors section.

Note: The InfluxDB and Kafka connectors will not work if the respective servers are not running.

1.5. Getting Started 21

	Jump to Concept
	Introduction
	Connectors
	Extend Connectors
	Configuration
	Getting Started

